

Multilayer Ceramic Chip Capacitors [Stacked Capacitors]

SMC Series

MLCC Design, Suitable for Switchmode Power Supply Filters

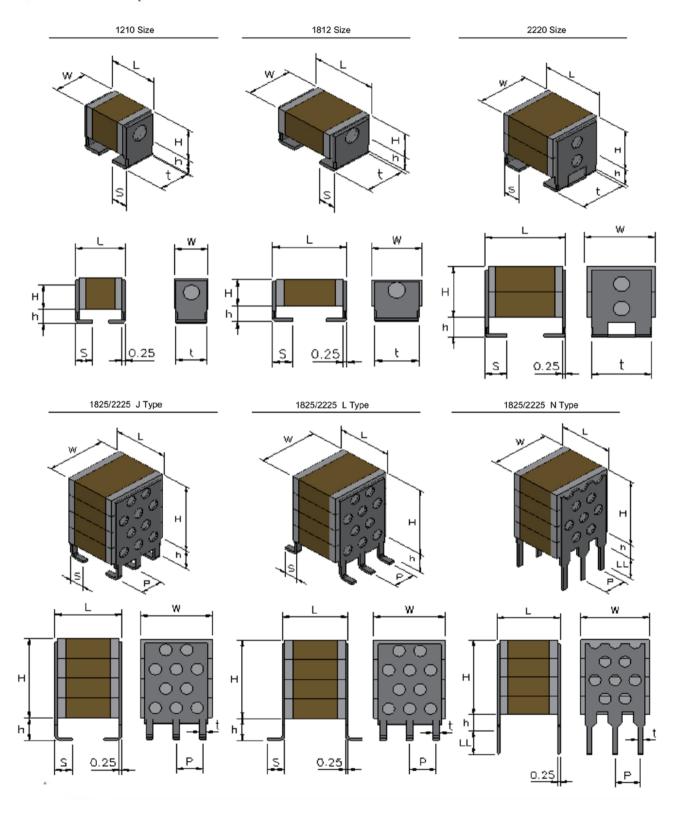
◆ Features

- ☐ Stacked design offers the high capacitance similar to Tantalum but with extremely low ESR advantage.
- ☐ 'J', 'L' and 'N' Leaded configuration provide mechanical and thermal stress relief.
- ☐ Capacitance values up to 44µF. Voltage from 50V to 1KV.
- ☐ Available in NP0 and X7R dielectrics .
- ☐ HIREL screening available.
- ☐ RoHS compliant.
- **♦ Summary of Specifications**

Applications

- Power supplies
- □ DC-DC converters
- Surge protection
- ☐ Industrial control circuits
- □ Snubbers
- ☐ Filtering, smoothing, and decoupling application
- ☐ HIREL applications
- □ Custom applications

Operating Temperature	-55 ℃~ +125 ℃				
Rated Voltage	50Vdc ~ 1000Vdc				
Temperature Coefficient of	NPO : \leq \pm 30ppm/ $^{\circ}$ C , -55 to +125 $^{\circ}$ C (EIA Class I)				
Capacitance	X7R : \leq ± 15% , -55 to +125 $^{\circ}$ C (EIA Class II)				
Capacitance Range	NPO: 2.2 nF to 500nF / X7R : 20nF to 44uF				
Dissipation Factor	NPO : Q≧ 1000 at 1KHz / X7R : 2.5%max. at 1KHz				
Insulation Resistance	10GΩ or 500/C Ω, whichever is smaller				
Aging	NPO: 0%, X7R: 1.0% per decade of time typical				
Dielectric Withstanding Voltage	V ≤50V : 250% Rated Voltage				
	100V ≤ V <500V : 200% Rated Voltage				
	500V ≤ V <1KV : 150% Rated Voltage				
	1000V = 120% Rated Voltage				
Tolerance	± 2% tolerances are only available in NPO				
Patent Number	M505047				


♦ How To Order

SMC	49	J	Х	224	К	501	Т	Н	01
	Stack and Size	Lead Configuration		Capacitance (pF)	Tolerance	Rated Voltage	Packaging	Special test Requirement	Special
	The first digit:		Ex.:	Ex.:	Ex.:	Ex.:	B: Bulk	Blank:	Blank:
Commercial Size		h=0.070" L: L Lead for	N: NP0 X: X7R	103:10x10 ³ 224:22x10 ⁴	G: +/-2.0% J: +/-5.0%		T: T&R W: Waffle	standard	No special requirement
	Second Digit: Chip Size	h=0.070" N: Straight	B: X5R	475:47x10 ⁵	K: +/- 10% M: +/- 20%	201: 200Vdc 501: 500Vdc	pack	H: Hi-Reliability	01~99:
	5: 1210 6: 1812 7: 2220	Lead P:J Lead for h=0.045"				102:1000Vdc		Testing	Customer special requirement
	9: 2225	S : L Lead for h=0.045" A: Flat type							
	3. 3330	Lead							

♦ Dimensional Shape

♦ Dimensions

Unit: mm [inches]

EIA Size Code	1210		18	312	22	20	1825	
Size Code	15	25	16	26	17	27	18	28
L	3.80 Max	3.80 Max	5.50 Max	5.50 Max	6.50 Max	6.50 Max	5.35±0.50	5.35±0.50
	[.150 Max]	[.150 Max]	[.217 Max]	[.217 Max]	[.256 Max]	[.256 Max]	[.210±.020]	[.210±.020]
W (max.)	2.90	2.90	4.00	4.00	5.50	5.50	6.85	6.85
	[.114]	[.114]	[.157]	[.157]	[.217]	[.217]	[.270]	[.270]
H(max.)	2.20	4.40	2.60	5.20	3.00	6.00	3.00	6.00
	[.087]	[.173]	[.102]	[.205]	[.118]	[.236]	[.118]	[.236]
S	1.00±0.10	1.00±0.10	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50
	[.040±.004]	[.040±.004]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]
Р			2.54±0.25 [.100±.010]	2.54±0.25 [.100±.010]	2.54±0.25 [.100±.010]	2.54±0.25 [.100±.010]	2.54±0.25 [.100±.010]	2.54±0.25 [.100±.010]
h* (Typical)	1.30	1.30	1.30	1.30	1.30	1.30	1.78	1.78
	[.051]	[.051]	[.051]	[.051]	[.051]	[.051]	[.070]	[.070]
h* (P/S Type)							1.14 [.045]	1.14 [.045]
LL** (min.)					2.54 [.100]	2.54 [.100]	2.54 [.100]	2.54 [.100]
t	2.25±0.1	2.25±0.1	3.08±0.1	3.08±0.1	4.50±0.10	4.50±0.10	0.60±0.10	0.60±0.10
	[.089±.004]	[.089±.004]	[.121±.004]	[.121±.004]	[.177±.004]	[.177±.004]	[.024±.004]	[.024±.004]
# of leads per side	1	1	1	1	1	1	3	3

EIA Size Code		1825		2225					
Size Code	38	48	58	19	29	39	49	59	
L	5.35±0.50	5.35±0.50	5.35±0.50	6.35±0.50	6.35±0.50	6.35±0.50	6.35±0.50	6.35±0.50	
	[.210±.020]	[.210±.020]	[.210±.020]	[.250±.020]	[.250±.020]	[.250±.020]	[.250±.020]	[.250±.020]	
W (max.)	6.85	6.85	6.85	6.85	6.85	6.85	6.85	6.85	
	[.270]	[.270]	[.270]	[.270]	[.270]	[.270]	[.270]	[.270]	
H(max.)	9.00	10.85	10.85	3.00	6.00	9.00	10.85	10.85	
	[.354]	[.427]	[.427]	[.118]	[.236]	[.354]	[.427]	[.427]	
S	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	1.65±0.50	
	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	[.065±.020]	
Р	2.54±0.25	2.54±0.25	2.54±0.25	2.54±0.25	2.54±0.25	2.54±0.25	2.54±0.25	2.54±0.25	
	[.100±.010]	[.100±.010]	[.100±.010]	[.100±.010]	[.100±.010]	[.100±.010]	[.100±.010]	[.100±.010]	
h* (Typical)	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	
	[.070]	[.070]	[.070]	[.070]	[.070]	[.070]	[.070]	[.070]	
h* (P/S Type)	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
	[.045]	[.045]	[.045]	[.045]	[.045]	[.045]	[.045]	[.045]	
LL** (min.)	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	
	[.100]	[.100]	[.100]	[.100]	[.100]	[.100]	[.100]	[.100]	
t	0.60±0.10	0.60±0.10	0.60±0.10	0.60±0.10	0.60±0.10	0.60±0.10	0.60±0.10	0.60±0.10	
	[.024±.004]	[.024±.004]	[.024±.004]	[.024±.004]	[.024±.004]	[.024±.004]	[.024±.004]	[.024±.004]	
# of leads per side	3	3	3	3	3	3	3	3	

- * 'h' varies depends on the lead style. See lead configuration.
- ** "LL" applies only to Straight (N) leads.

♦ Capacitance Range

EIA Size Code		NPO Maximum Capacitance					X7R Maximum Capacitance				
Chip Size	3129 Code	50V	100V	200V/250V	500V	1000V	50V	100V	200V/250V 500V	1000V	
1210	15 (1×Cap)	104	473	682	682	332	475	475	684 124	473	
1210	25 (2×Cap)	204	943	133	133	662	945	945	135 244	943	
1812 16 (1	16 (1×Cap)	124	104	273	822	682	105	105	105 474	104	
1012	26 (2×Cap)	244	204	543	163	133	205	205	205 944	204	
2220	17 (1×Cap)	273	273	333	273	183	226	106	225 105	224	
2220	27 (2×Cap)	543	543	663	543	363	446	206	445 205	444	
	18 (1×Cap)	104	104	104	104	103	225	105	105 474	104	
	28 (2×Cap)	204	204	204	204	203	445	205	205 944	204	
1825	38 (3×Cap)	304	304	304	304	303	665	305	305 145	304	
	48 (4×Cap)	404	404	404	404	403	885	405	405 185	404	
	58 (5×Cap)	504	504	504	504	503	116	505	505 235	504	
	19 (1×Cap)	823	823	333	153	153	475	475	225 474	104	
	29 (2×Cap)	164	164	663	303	303	945	945	445 944	204	
2225	39 (3×Cap)	244	244	993	453	453	146	146	665 145	304	
	49 (4×Cap)	334	334	134	603	603	186	186	885 185	404	
	59 (5×Cap)	414	414	164	753	753	236	236	116 235	504	

■ Other Stacked configuration on other sizes, capacitance values and voltages rating are available. Please contact Holy Stone.

◆ Soldering and Handling Precautions

The recommended method for soldering large SMC capacitor, is reflow soldering. Wave soldering and manual soldering with iron is not recommended.

Ceramic capacitors must be preheated with less than 2°C/sec rate to about 50°C below the reflow temperature. Sudden increase, or decrease in temperature more than the recommended rate, during soldering, may cause internal thermal cracks.

